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ABSTRACT 
One way to increase access to education on computing is to inte- 

grate computational thinking (CT) into K12 disciplinary courses. 

However, this challenges teachers to both learn CT and decide how 

to best integrate CT into their classes. In this position paper, we 

present PRADA, an acronym for Pattern Recognition, Abstraction, 

Decomposition, and Algorithms, as a practical and understand- 

able way of introducing the core ideas of CT to non-computing 

teachers. We piloted the PRADA model in two, separate, week-long 

professional development workshops designed for in-service mid- 

dle and high school teachers and found that the PRADA model 

supported teachers in making connections between CT and their 

current course material. Initial findings, which emerged from the 

analysis of teacher-created learning materials, survey responses, 

and focus group interviews, indicate that the PRADA model sup- 

ported core content teachers in successfully infusing CT into their 

existing curricula and increased their self-efficacy in CT integration. 

CCS CONCEPTS 
• Social and professional topics → Computational thinking; 

K-12 education; 

KEYWORDS 
Professional Development; Computational Thinking 

1 INTRODUCTION 
Computational Thinking (CT) is the thought processes involved in 

formulating problems so their solutions can be represented as com- 

putational steps and algorithms [1], which often include problem 

decomposition and abstract reasoning. As computational technolo- 

gies are becoming a more integral part of our lives and workforce, it 

is important for students to develop these CT skills early and with 

equal opportunity in order to prepare them for their future careers. 

Teaching CT in core classes has the advantage to avert the selection 

bias present in elective or after school programs [21]. However, this 

challenges us to effectively train teachers to be able to understand 

CT concepts, identify CT components in their lessons, and foster a 

CT mindset among their students. 

After Wing re-introduced the concept of CT in 2006 [25], a num- 

ber of attempts have been made to define what CT is at various 

granularities [2, 9, 22, 24]. However, many definitions include Com- 

puter Science terms (automation, parallelization, etc.) that are not 

only hard to explain in any K-12 classroom, but are also difficult to 

understand without actual “coding" activities, which not all teach- 

ers have the resources or knowledge to facilitate. Furthermore, CT 

professional development (PD) without intentional content contex- 

tualization fails to offer affordances for how teachers can utilize 

CT to support disciplinary learning goals. There is a need for a CT 

definition that teachers can effectively use to communicate CT to 

students in core classroom settings. Such a CT definition needs to 

be: 
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(1) understandable by K-12 teachers, the majority of whom have 

limited Computer Science knowledge 

(2) integratable into existing curricula, and 

(3) generalizable to any discipline 

In this paper, we present PRADA (an acronym for Pattern Recog- 

nition, Abstraction, Decomposition, and Algorithms) as a practical 

and understandable way of introducing the core ideas of CT to 

non-computing teachers in order to support them in infusing CT 

into their curricula. We piloted PRADA as part of a summer PD on 

infusing CT into middle and high school content area courses. Dur- 

ing the PD, we taught and encouraged teachers to both recognize 

the PRADA elements that already exist in their courses, and also 

helped them to create digital artifacts in a block-based program- 

ming language to facilitate teaching PRADA. We approached the 

professional development with the following preliminary questions: 

(1) Were the teachers able to create computational artifacts? 

(2) Were the teachers able to correctly identify the PRADA com- 

ponents in their artifacts? 

mailto:permissions@acm.org
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(3) Did teachers show an increase in self-efficacy towards un- 

derstanding and teaching PRADA? 

(4) Were there any interesting trends in teacher created artifacts 

and feedback? 

 
This paper presents our preliminary results which emerged from 

interpretations of daily teacher feedback, semi-structured inter- 

views, and summative PD surveys, but focused primarily on the 

teachers’ products: lesson plans and block-based programs. We 

begin with an overview of CT frameworks and pedagogical strate- 

gies for CT PD. Then, we make the case for the use of PRADA   

as an understandable way of introducing CT to non-computing K-

12 teachers. The next part presents the methodology used for this 

investigation and continues on to show evidence from the teacher 

artifacts indicating exemplars of successful implementa- tions of 

PRADA. We conclude with a discussion of our findings and 

recommendations for future CT teacher professional development. 

 
2 LITERATURE REVIEW 
In the last decade, the concept of Computational Thinking has 

undergone several reformations. Wing has moved CT from the 

concepts fundamental to computer science (solving problems, de- 

signing systems and understanding human behavior [25]), to the 

“thought processes involved in formulating problems and their so- 

lutions so that the solutions are represented in a form that can be 

effectively carried out by an information-processing agent" [24]. 

The important distinction here is that the solutions can be carried 

out by another agent effectively. 

In 2011, the International Society for Technology in Education 

(ISTE) and Computer Science Teachers Association (CSTA) came 

together to create an operational definition of CT that could pro- 

vide a framework and set of vocabulary terms for all K-12 teachers 

[9]. They describe CT as a problem-solving process that includes 

formulating problems, logically organizing data, representing data 

through abstractions, automating solutions, reflecting on the effi- 

ciencies of possible solutions, and generalizing and transferring this 

process to a variety of problems. However, while these ideas are 

general enough to apply to any discipline, there remains a lack of 

clarity with regard to how teachers can use CT to support content 

learning and a need for more concrete models and supports for 

classroom integration. 

Several attempts have been made to map CT specifically to other 

subject areas. Weintrop et al. have developed a taxonomy of CT 

practices for both Math and Science disciplines drawing on major 

connections to modeling and abstraction [21, 22]. Each of the four 

CT skill sets identified by Weintrop and his team evolved from 

reviews of literature and common coursework, as well as interviews 

and discussions with K-12 educators and researchers. Both Data and 

Information skills, as well as Modeling and Simulation skills, map 

directly to STEM practices. The new skills, Computational Problem 

Solving and Systems Thinking, focus more directly on practices 

deliberately expressed in Computer Science, such as debugging, 

assessment of solution effectiveness, and thinking in levels, which 

might be difficult for K-12 teachers to easily recognize within their 

own curricula or unpack for students. 

Similarly, the vocabulary terms used in the early CT framework 

identified by the National Research Council [4, 7] present defini- 

tional challenges for teachers. In this framework, in addition to data 

manipulation and simulations, both parallelization and automation 

are used as high level concepts. Although these last two skills are 

useful for software engineers, these may be difficult or impractical 

to integrate into middle and high school courses. 

In order to demystify the terminology around CT [4], a simpli- 

fied skill set and vocabulary has been defined by k12cs.org and 

further modified by Google Education [10, 16]. K12cs.org focuses 

on: Defining problems; developing and using Abstractions; Cre- 

ating computational artifacts; and Testing and refining artifacts. 

Although simplified, not all classrooms have ready access to com- 

puting technology, so the latter half of the CT skills can be difficult 

for teachers to implement. Instead, Google focuses on Problem 

decomposition, Pattern recognition, Abstraction, and Algorithm 

design [10]. As stand-alone or intermixed concepts, these can be 

implemented into other subjects by simply modifying existing les- 

son plans instead of needing to create something entirely new. An 

example of each concept is listed below [4]: 

Pattern Recognition in Social Studies - identify trends in data 

from historical or social statistics 

Abstraction in Science - simplify models of Newtonian mechanics 

or solar systems 

Decomposition in English/Language Arts - write outlines, iden- 

tify arguments 

Algorithms in Math - list steps for doing long division or integral 

calculus 

Although the historical trend in CT literature has been on identi- 

fying key concepts and a core definition [12], there is a new trend ex- 

ploring how to teach these concepts to in-service teachers [5, 19, 26]. 

As noted by Margolis [17] and Yadav [26, 27], teachers will not be 

able to provide their students with quality CT instruction until the 

teachers themselves understand the construct and feel confident 

about its integration in their curriculum. If teachers do not feel con- 

fident in their abilities to teach computational thinking, students 

may have negative experiences in learning the concept [13]. 

Teachers’ thinking and practice are understood to be shaped in 

large part by continued professional learning [3, 8]. Recent research 

by Bower et al. indicates that “teacher’s computational thinking 

capabilities are relatively malleable" and professional development 

may sufficiently impact teachers’ understanding of CT. According 

to Bower’s study, teachers can learn CT concepts in a short amount 

of time, building self-efficacy [5]. Furthermore, a 2018 survey by 

Sands et al. found that there were no differences on teachers’ con- 

ceptions of computational thinking based upon either the content 

area (STEM vs. non-STEM) or grade level (primary vs. secondary) 

[19], making CT PD a level learning field for in-service teachers. 

However, there were some limitations to Bower’s study: CT was 

taught in a stand-alone context not situated in the teachers’ own 

domains. While teachers’ self-efficacy and conceptual understand- 

ings of CT increased after the PD, teachers expressed concern over 

how to integrate CT into their classrooms [5]. Sands’ study sug- 

gests that in order to successfully teach CT, training needs to be 

content-specific and focused on how to integrate computational 

thinking ideas into existing curricula. Specifically, teachers need 



Paper Session: Computational Thinking 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA 

908 

 

 

 

to be introduced to computational thinking in a way that meets 

their disciplinary learning goals and fits within their pedagogical 

practices [19] rather than being an “instructional add-on in the 

K-12 curriculum" [11]. 

3 DEFINING CT AND PRADA 

3.1 What is PRADA 
Google’s “Computational Thinking for Educators" course identifies 

Decomposition, Pattern Recognition, Abstraction, and Algorithm 

design as the key elements that make up Computational Thinking 

[10]. Even though CT is essential to programming, it can be used 

to facilitate problem solving across all disciplines, not strictly Com- 

puter Science. There is no strict ordering of these elements, and 

each element can be taught separately. We reordered these elements 

into PRADA as a mnemonic device to help teachers and students 

remember the terms. We also revised Google’s CT definition, as 

shown in italics, to make it more adaptable to different disciplines: 

Pattern Recognition observing and identifying patterns, trends, 

and regularities in data, processes, or problems 

Abstraction identifying the general principles and properties that 
are important and relevant to the problem 

Decomposition breaking down data, processes, or problems into 

meaningful smaller, manageable parts 

Algorithms developing step by step instructions for solving [a 

problem] and similar problems 

3.2 Why PRADA 
There are several advantages in using PRADA as a way of in- 

troducing CT. The four elements are detailed enough to capture 

the essence of CT defined in previous frameworks. We emphasize 

PRADA as a mindset, not bounded by content area or tools, that 

helps people solve problems in a systematic and generalizable way. 

We consider coding to be an important activity that can facilitate 

the understanding of PRADA, but teaching PRADA does not require 

teachers to create coding activities or artifacts for their students. 

PRADA can also be taught with various unplugged activities. Figure 

1 shows a mapping of PRADA compared to other popular CT compo- 

nents. PRADA strips out the Computer Science/coding specific com- 

ponents described elsewhere and retains the parts that can be easily 

generalized and integrated into different disciplines within K-12. 

Non-CS/coding specific components that are left out, namely Data 

& Information and Modeling & Simulations, can still be explained 

with PRADA, as analyzing data generally involves abstracting use- 

ful information from recognized patterns, and simulation generally 

involves decomposing a phenomenon into parts/abstractions, and 

creating algorithms to mimic observed or hypothesized processes. 

Additionally, PRADA maintains a meaningful difference between 

elements such that each element in the PRADA model represents a 

distinguishable process during problem-solving and can be taught 

and explained in separate class activities. 

PRADA also gives teachers a set of memorable keywords to con- 

vey to their students when teaching CT. A previous research study 

that involved implementing CT in middle school science classrooms 

shows that the teachers had trouble mapping CT concepts to their 

teaching material. As a result, the teachers requested a concrete set 

of names of the key concepts so they could teach and reinforce the 

 

 

Figure 1: A mapping of popular CT components 

 
terms in each day’s activity [6]. PRADA serves as a manageable and 

memorizable set of keywords that teachers can explicitly introduce 

and reinforce in their daily classes. 

In this paper, we argue that the PRADA model can support K- 

12 teachers’ exploration of how to integrate CT into disciplinary 

classrooms. Our goal is to help teachers realize that many of the 

pedagogical practices and materials that they already use within 

their classrooms can address or provide distinct affordances for 

integrating the PRADA model. However, to do this, teachers need 

practice and support to recognize and apply CT elements to their 

own disciplinary content (see examples in section 2). It is with this 

in mind that we organized our Infusing Computing professional 

development program to provide opportunities for teachers to work 

together both within and across disciplines and to learn to create 

programs with extensive support from computer scientists. 

4 METHODS 
During two intensive, 5-day Infusing Computing PD workshops  

in North and South Carolina in Summer 2018, we engaged 116 

middle and high school teachers in designing plans to integrate 

computational thinking into their classrooms. We designed each 

day of the workshop to include: Snap! programming bootcamps, 

content area focused PRADA sessions, and collaborative develop- 

ment sessions, which culminated in the development of a learning 

segment that integrates CT into each teacher’s disciplinary class- 

room instruction. Specifically, the PRADA session began with a 

whole-group discussion of the PRADA element of the day in which 

teachers discussed concrete examples of how their existing teach- 

ing practices included PRADA elements, followed by examining 

and analyzing, in small groups, the sample classroom artifacts cre- 

ated by the research group. In the development sessions, teachers 

worked collaboratively in either school or content teams to make 

their projects. Although teachers were encouraged to create learn- 

ing segments that allowed students to practice coding, this was not 

a requirement. Instead, teachers had the flexibility to build lessons 

around CT using the resources available in their classrooms. Typical 

learning segment components included a Snap!-like prototype, a 

learning plan that explicitly identified how PRADA elements were 
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addressed, and supplemental pedagogical materials (e.g., graphic 

organizers, templates, slideshow presentations, coding guides). 

We recruited Math, Science, Social Studies, and English/Language 

Arts (ELA) content area teachers for grades 6-12 in both states to 

attend individually or to bring teams from their schools. There 

were 58 teachers in each of our two workshops, PD1 and PD2, with 

teachers from several content areas as shown in Table 1. Although 

many teachers attended in teams, teachers could choose to work 

individually or with other self-selected teams within the workshop 

to create learning segments that would be meaningful in their own 

classrooms. Overall, there were 116 people in 40 teams across the 

two weeks, with teams ranging in size from one to as many as 6 

teachers. 

Table 1: Teacher participants and project by discipline 

   Math    Science    Humanities Interdisciplinary 

PD1 Teachers 21 24 13 

  PD1 # Projects    4 11 4 2  

PD2 Teachers 20 19 17 

  PD2 # Projects    7 7 3 2  

 
PD sessions were led by members of the research team with sup- 

port from local area teacher leaders with experience in integrating 

computing into their curricula. Taking on the roles of participant- 

observers [23] gave members of the research team the opportunity 

to interact with participants on a regular basis and to work sys- 

tematically to understand the teachers’ developing understandings 

of the PRADA model, as well as their beliefs and expectations re- 

garding integrating CT into their classrooms. We believe that these 

roles allowed us important insights into the data analyzed in this 

paper, particularly given that the goal of this work is the evaluation 

of teachers’ understanding and implementation of PRADA, rather 

than their perceptions of the PD or facilitators. 

4.1 Data Collection & Analysis 
Primary sources of data for this analysis included teacher products 

(block-based programming prototypes, learning segment plans, and 

related artifacts), pre- and post-PD surveys, daily reflections, feed- 

back forms for teacher presentations, and audio-recorded teacher 

interviews. Data analysis proceeded in three overlapping and re- 

cursive phases: systematic review and coding of learning segment 

artifacts, purposive sampling and analysis of focal learning seg- 

ments, and triangulation of data sources. 

During the first phase of analysis, the first author, an expert 

who participated in the design and the implementation of the PD, 

reviewed the learning segments and the block-based programming 

project files of all the collaborative teacher submissions (n = 40). 

While many of the products have interdisciplinary connections, of 

the 40 products, 11 were primarily designed for math, 18 for Science, 

7 for Humanities (Social Studies and English Language Arts), and 4 

were purposefully designed for all disciplines. Products included a 

form where teachers were to elaborate how their planned lessons 

would target each PRADA concept. Each submission was reviewed 

to determine whether or not the interpretation of PRADA in the 

context of the lesson plan agreed with what we intended the teach- 

ers to learn. Based on our expert review, most teams successfully 

implemented PRADA as 32.5% of the projects had a correct expla- 

nation and implementation for all 4 of the PRADA elements, and 

32.5% of the projects had a correct explanation and implementation 

for two or more elements of PRADA. Of the remaining 13 projects, 

6 identified PRADA elements by name, 4 incorrectly identified 

PRADA elements, and 3 made no mention of PRADA. 

In the second phase, we used purposive sampling to select four 

case studies representing math, science, humanities, and interdisci- 

plinary products to analyze evidence of teachers’ understandings 

of the PRADA model within their learning segments. Purposive 

sampling is “based on the assumption that one wants to discover, 

understand, or gain insight; therefore one needs to select a sample 

from which one can learn the most" [18]. The case studies selected 

were based on the following criteria: the lesson plan is complete, 

the learning segment or supporting document clearly describes 

how each of the four elements of PRADA is identified and used in 

the lessons, and the block-based coding prototypes were completed 

with a clear indication of the presence of some PRADA elements 

(e.g. proper use of the repeat block demonstrating understanding 

of pattern recognition). 

During the third and final phase of analysis, we focus on partici- 

pant feedback. The project team examined feedback from presenta- 

tions, survey results, and teacher interviews to triangulate findings 

across sources using the constant comparative method [20]. 

 

5 CASE STUDIES 
We report our preliminary findings from the PRADA themed Infus- 

ing Computing PD using four exemplary projects. We intend these 

case studies to demonstrate how teachers successfully identified 

and infused CT into their own domains, as well as to highlight 

how teachers were able to bridge domains using PRADA. After we 

present a description of each product, we list the teacher expla- 

nations for integrating PRADA in quotes, and we offer our own 

interpretations of the product’s relation to each PRADA element in 

italics. We also discuss how these exemplars illustrate opportunities 

for additional support that may be needed for teachers struggling 

with some elements of CT. 

 
5.1 Interdisciplinary Exemplar: Life in the 

Middle Ages 
One interdisciplinary group of high school teachers made a his- 

torical puzzle game for students to explore life in the Middle Ages 

through puzzles and quizzes. Table 2 shows how the teachers ex- 

plained the PRADA elements, providing good examples and activi- 

ties in all cases except for abstraction. 

 
5.2 English/Language Arts Exemplar: 

Historical Game 
In our second exemplar for 6th grade English Language Arts, teach- 

ers created a historical role-playing game to provide context for 

students’ reading of narrative and expository texts. Table 3 shows 

how this team was able to identify and apply all four PRADA ele- 

ments in their learning segment and identified student learning for 

patterns, abstraction, and decomposition. 
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Table 2: PRADA in the interdisciplinary product 

 
Pattern Rec.: “Students should identify the repetition in 

games, the progression of the timeline, characters,  puzzle 

patterns, and the patterns in graph plotting". 

Abstraction: Students would demonstrate abstraction through 

“overarching knowledge of the middle ages." This suggests that 
the teachers either consider the knowledge to be abstractions, or 
they did not understand abstraction enough to provide concrete 
examples. 

Decomposition: Students should “research events and note 
dates in the timeline, discover specific characteristics from the 

prologue of the game, break down the logical components in 

the puzzle games, and so forth". 

Algorithms: Students would design algorithms to “code the 
different parts of the game and create a storyboard". 

 

Table 3: PRADA in the humanities product 

 
Pattern Rec.: During their explorations of the world, the 

teachers task students with recognizing the “repetition in 

history, storytelling, coding" when clicking on similar items. 

Abstraction: “Understand history inspiring fiction" This 
demonstrates a good disciplinary use of the concept of abstraction, 
drawing parallels between history and stories. 

Decomposition: Students should “break down plot diagrams 
into subcategories and look further into what blocks go into a 

specific abstraction". This implies a good understanding of our 
CT definitions of decomposition and abstraction (naming a 
functional group of blocks) and the attempt to connect 
decomposition to abstraction. 

Algorithms: In their Snap!  file, teachers used multiple sprites 

to handle different functionalities, reused code in different 

sprite objects, and correctly coordinated the logic and timing 

between the sprites, demonstrating impressive understanding. 

Teachers did not specify student activities for algorithms. 

 
5.3 Science Exemplar: Rock & Mineral Quiz 
The science exemplar, Rock & Mineral Quiz, was developed for 

students in 6th - 10th grade science classes to review and practice 

knowledge learned about the components of  rocks and  minerals 

in rock cycles. The first Snap! project created by the teachers was 

designed to monitor and evaluate students’ ability to respond to 

questions related to rocks and minerals throughout a class period. 

The other project is intended to be used in a exploratory lab activity, 

where the students measure different properties of rock specimens 

and input the measurements into the Snap! project to check whether 

they made correct inferences. The project files demonstrate a clear 

understanding of pattern recognition and decomposition through 

the reuse of code segments and use of multiple sprites and control 

structures to handle different logic. There is no clear indicator of 

abstraction in either of the project files. Table 4 shows the break- 

down of PRADA elements listed for this group. We felt that the 

listed elements for Decomposition and Algorithms may need to be 

reversed, but they could be appropriate depending on how they are 

carried out and discussed in classrooms. 

Table 4: PRADA in the science product 

 
Pattern Rec.: Students should “recognize the composition of 

rocks throughout the rock cycle" (science) and “recognize 

patterns in the coding language and how to incorporate loops" 

(coding). 

Abstraction: Students should identify global and local 

properties (science) and code them as global and local variables 
in Snap! (coding). 

Decomposition: Students should “break down the 

composition of minerals by characterizing density, hardness, 

and strength" (science) and “will complete sorting activities to 

learn where command blocks are located" (coding). 

Algorithms: Students investigate “the rock cycle in a series of 

labs and activities" (science) and “break down the previously 

written code for a review game in Snap! by replacing lines of 

code with different questions" (coding). 

5.4 Math Exemplar: ACT Football 
Our exemplar math product is an ACT practice quiz football game. 

Each question is associated with a number of yards that will advance 

their team if answered correctly, or penalize their team if answered 

incorrectly. The teachers described two ways of using the game:  

as a practice for the ACT test and as a way of having the students 

learn CT and coding skills. Table 5 demonstrates the use of PRADA 

by this team. 

Table 5: PRADA in the math product 

 
Pattern Rec.: Students will be “questioned on pattern 
recognition as they play, such as:‘what does the game do when 

a correct answer is given? A wrong answer?’" They expect the 

students to be able to notice the repetitive patterns in the game 

and familiarize themselves with the game mechanics. 

Abstraction: Teachers will “display a [custom] block and 

explain [how it is] considered an abstraction" that is “composed 

of an algorithm". 

Decomposition: In the Snap! project, teachers demonstrated 

understanding of decomposition by creating custom blocks 

named “coin toss", “initial possession", and “play" Teachers did 
not specify how students would practice or demonstrate 
decomposition. 

Algorithms: Students will “use an algorithm to decide what 
level of questions they want to answer which will determine 

their advancement in the football game". Later, the students will 

be asked to “use an algorithm to create a block of code that will 

ask a question and respond to the answer as to whether correct 

or incorrect", which is an algorithm the teachers crafted in the 

“play" block in their Snap! project. 

 
6 ANALYSIS OF TEACHER FEEDBACK 
The analysis of teacher post-PD surveys demonstrates tha PRADA 

was warmly received. In both PDs, respondents showed a high 

level of willingness to adopt PRADA and high self-efficacy in being 

able to design and teach using PRADA. Table 6 shows the average 

response for Likert-style questions participants received. 
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Table 6: Average rating for teacher Self-Efficacy (1 strongly 
disagree to 5 strongly agree) 

 

  PD1 PD2  

7 DISCUSSION & CONCLUSIONS 
Unlike other coding-focused CT models, PRADA is an abstraction 

of the mindset that is commonly used by computer scientists and 

I am more likely to incorporate PRADA activities    4.59 4.55 

in my classroom. 

programmers when solving problems. We emphasize the word 

mindset because PRADA is a thinking process, not bounded by 

I can more effectively design PRADA activities. 4.43 4.40 content area or tools, to help people solve problems in a systematic 

I can better engage students in making sense of 4.46 4.40 and generalizable way. When helping teachers make connections 

  PRADA and designing solutions to problems.  

 
Our analysis of teachers’ daily reflections and interviews reveals 

that PRADA seemed to be well-received because its elements con- 

nected easily with already established concepts in the teachers’ 

disciplines. For example, as one teacher notes, “Abstraction for 

math is basically modeling - I do it every day!". As they established 

connections between CT and existing curricula, teachers began to 

understand that they already engage in computational  thinking 

(“in math, we use abstractions all the time"), but they now had the 

toolkit to be able to express these ideas using CT language. As one 

teacher put it, “The introduction of the terminology of PRADA 

was helpful, as teachers realized that they are already doing this." 

Another said, “... I really do this within my teaching already. I just 

need to share with students this terminology in science class." 

Teachers were also able to identify CT in their colleagues’ learn- 

ing segments. For instance, as one teacher noted in their feedback 

to a colleague, “I love that [students] can do a creative model of 

their physical quilt that models computational thinking." Another 

teacher focused specifically on the disciplinary elements of calculus 

that mirrored PRADA: “It is interesting that calculus in and of itself 

is representative of computational thinking. It’s very “meta" that 

the students are creating a program to better understand multiple 

representations while they are simultaneously gaining a deeper 

understanding of PRADA concepts that are mirrored in calculus 

concepts." 

However, while teachers had success in both identifying and cre- 

ating connections with PRADA elements, some confusion existed 

in how to teach these elements within a classroom. As one teacher 

put it: “HOW do you teach abstraction? I can recognize it, but what 

are ways that I can emphasize it, and have my students value ab- 

straction?" This was further compounded with some teachers still 

having confusion over to what degree they needed to incorporate 

programming into their teaching of CT (“Are we expected to have 

the students code, or, is that just an option?"). 

A few teacher products did not explicitly relate PRADA elements 

to their disciplines, but only indicated how PRADA relates to coding. 

This may reflect a potential lack of understanding of PRADA as a 

connector between CT and disciplines; as one teacher said, “PRADA 

helps me work in coding in my classroom". However, this may also 

simply be a limitation of our data collection instrument which 

only provided small text boxes for explaining how their products 

related to PRADA. In our 3C model of Code, Connect, Create [15] for 

integrated CT professional development, teachers attended sessions 

on learning to code, to connect PRADA to their disciplines, and 

to create their learning segments for the classroom. Teachers may 

have been eager to demonstrate their understanding of PRADA in 

the context of coding, rather than in their own disciplines. 

to their disciplinary areas, we have found that while STEM areas 

have natural connections to CT through activities like modeling, 

simulations and experimental methods (e.g., NGSS), other areas 

like English Language Arts can also benefit from applying and 

recognizing CT. However, before a teacher can map the PRADA el- 

ements to their curriculum, they need to learn to recognize PRADA 

elements within their discipline and see examples of how PRADA el- 

ements can be introduced. We believe that our approach to helping 

teachers learn about CT and how to integrate it into their class- 

rooms provided them with opportunities to discover and elaborate 

on PRADA elements and to design their own learning segments 

with the assistance of computing experts. Teachers could enforce 

a long-term conversation about CT by identifying places in their 

existing curriculum where students are struggling and looking for 

opportunities to integrate CT and coding to help students learning. 

Furthermore, we hypothesize that the PRADA model could also 

help teachers realize how the CT mindset can be used across disci- 

plines to develop generalized problem-solving skills and disposi- 

tions. Research shows that interdisciplinary lessons give students 

the opportunity to apply knowledge from different areas in problem 

solving [14]. As our findings demonstrate, interdisciplinary teacher 

teams can mix and match PRADA elements from different content 

areas, which mitigates the concern that some PRADA elements 

might be hard to identify or explain in certain content areas. In 

addition, PRADA can help generalize CT across disciplines, pro- 

viding students with a more tangible model with which to make 

sense of the problem-solving process and other CT approaches. 

While we have shown that teachers are successful at developing 

interdisciplinary lessons through PRADA, research into their peda- 

gogical effects in classroom environments is still needed. Though 

our research team has developed and helped teachers implement 

CT lesson using the PRADA model[6], the broader potential impact 

of PRADA can only be fully realized when teachers can understand 

CT and implement effective CT-integrated lesson plans themselves. 

In conclusion, this paper proposed and demonstrated how PRADA 

can be used to help K-12 teachers develop an understanding of Com- 

putational Thinking and how to integrate it into their disciplinary 

courses. We argue that PRADA is a CT model that can be easily 

understood by teachers, even those with little to no experience with 

programming or computer science. While the elements of CT are 

not novel, the way in which they were integrated into the teacher 

PD and the way teachers were asked to integrate them into their 

classrooms is novel. In the future, we will further investigate the 

impact of this promising PRADA model for supporting teachers in 

integrating CT into K12 classrooms. 
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